QUIZ 16 SOLUTIONS: LESSONS 20-21 OCTOBER 19, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [5 pts] Compute the second order partial derivatives of

$$
f(x, y)=\ln \left(x^{2} y\right)
$$

Solution: We begin by finding the first order partial derivatives:

$$
\begin{aligned}
& f_{x}=\frac{\partial}{\partial x}\left(\ln \left(x^{2} y\right)\right) \\
&=\frac{\frac{\partial}{\partial x}\left(x^{2} y\right)}{x^{2} y} \\
&=\frac{y \frac{\partial}{\partial x}\left(x^{2}\right)}{x^{2} y} \\
&=\frac{y(2 x)}{x^{2} y} \\
&=\frac{2}{x} \\
& f_{y}=\frac{\partial}{\partial y}\left(\ln \left(x^{2} y\right)\right) \\
&=\frac{\frac{\partial}{\partial y}\left(x^{2} y\right)}{x^{2} y} \\
&=\frac{x^{2} \frac{\partial}{\partial y}(y)}{x^{2} y} \\
&=\frac{x^{2}}{x^{2} y} \\
&=\frac{1}{y} \\
&
\end{aligned}
$$

Next, we find the second order partial derivatives:

$$
\begin{aligned}
f_{x x} & =\frac{\partial}{\partial x} \underbrace{\left(\frac{2}{x}\right)}_{f_{x}} \\
& =--\frac{2}{x^{2}} \\
f_{x y} & =\frac{\partial}{\partial y} \underbrace{\left(\frac{2}{x}\right)}_{f_{x}} \\
& =0 \\
f_{y y} & =\frac{\partial}{\partial y} \underbrace{\left(\frac{1}{y}\right)}_{f_{y}} \\
& =-\frac{1}{y^{2}}
\end{aligned}
$$

2. [5 pts] Use increments to estimate the change in z at $(5,9)$ if

$$
\frac{\partial z}{\partial x}=-9 x-10, \quad \frac{\partial z}{\partial y}=6 y+8
$$

and the change is x is .6 and the change in y is .8 . Round your answer to the nearest tenth.

Solution: The incremental approximation formula is

$$
\Delta z=\frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y
$$

We write

$$
\frac{\partial z}{\partial x}(5,9)=-9(5)-10=-55
$$

and

$$
\frac{\partial z}{\partial y}(5,9)=6(9)+8=62
$$

Further, we know $\Delta x=.6$ and $\Delta y=.8$. Thus, by our formula,

$$
\begin{aligned}
\Delta z & =\frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y \\
& =(-54)(.6)+62(.8) \\
& =16.6
\end{aligned}
$$

